

<u>AN514</u>

Software Interrupt Techniques

INTRODUCTION

This application note describes a unique method for implementing interrupts in software on the PIC16C5X series of microcontrollers. The method takes advantage of the PIC16C5X's architecture which allows changing the program counter under software control. Up to eight interrupt lines are possible, but the practical limit for simple code generation is six interrupts, or 64 possible input conditions. The interrupt detection time is under software control and standard I/O pins are used as the interrupt lines.

THEORY OF OPERATION

SOFTWARE POLLING OF I/O LINES REPLACES HARDWARE INTERRUPT

The interrupt conditions are determined by detecting changes on the I/O lines that have been selected to be the interrupt lines. These changes are used to create a jump table that allows a different program response to each interrupt condition. The interrupt response time is under software control and can be as short as ten to twenty microseconds, depending on main program and interrupt subroutine program length.

CREATING THE INTERRUPT SUBROUTINE JUMP TABLE

Each I/O condition may have its own unique subroutine to respond to changes on the interrupt lines. Direct access to these routines is achieved by using the PIC16C5X's ability to change the program counter under software control. Here is an example of how two I/O lines may be polled:

MOVF	CONDTN,W	;LOAD I/0 CONDITION INTO W ;REGISTER
ANDLW	3	;MASK OFF TOP 6 BITS
ADDWF	2,1	;ADD INPUT TO PROGRAM COUNTER
		;TO CREATE JUMP TABLE
GOTO	MAIN	;FOR NO CHANGE GO TO MAIN ;PROGRAM
GOTO	INT1	;FOR CHANGE IN BIT 0 GOTO INT1
GOTO	INT2	;FOR CHANGE IN BIT 1 GOTO INT2
GOTO	INT3	;FOR BOTH CHANGE GOTO INT3

The changes to the I/O lines have been used to create a two bit number that is added to the program counter. The GOTO that is executed depends on the new program counter address.

CREATING CONSTANT TIME POLLING

In most applications requiring interrupts, it is important to poll the interrupt lines at fixed time intervals, usually only a few microseconds in length. Two techniques may be used on the PIC16C5X to achieve this. They are dividing the main program into multiple sections and implementing an elapsed time counter (see flow chart). Both of these techniques use the same program jump table concept that was described above. First, the main program is divided into several sections based on the desired I/O polling time. When MAIN is called a branch register is added to the program counter. This determines which section of MAIN code should be executed next. At the end of execution the branch register is decremented so the next section of code will be executed after the next polling. If the branch register is zero then the number of sections of main code is added into it to start the main program over again.

An elapsed time counter can be implemented using the RTCC counter. At the beginning of I/O polling the RTCC register is cleared. It then starts counting the instruction cycles. Then after the main program subsection has been executed, the RTCC register is subtracted from the desired polling time. This determines how many instructions need to be executed before the next polling. A jump table is then created to execute these instructions before the next polling. An example is shown below. This example assumes from zero to 15 additional instruction cycles are needed. Actual numbers need to be computed for each individual application.

N	40VLW	POLL	; POLL:	=DESIRED	POLL	CYCI	ES	-	15
S	SUBWF	RTCC,W	;DETE	RMINE HO	W MUCH	TIME	то	WA	IT
1	ADDWF COUNTE	2,1 R	; ADD	WAIT	TIME	ТО	PRO	GR	MA
1	JOP		;15 AD	DITIONAL	INSTRU	JCTIC	N C	YCL	ES
:	:								
:			; TOTA	L OF 15	NOP'S				
1	JOP		;1 ADD	ITIONAL	INSTRU	CTIO	N CY	CL	ES
C	JOTO	START	;0 ADD	ITIONAL	INSTRU	CTIO	N CY	ZCL	ES

For example, if the desired instruction time is 50 cycles and the subsection we just executed has a consumed a total of 40 instruction cycles (including all overhead cycles) the value of

RTCC(40) - POLL(50-15(35)) =5

will be added to the program counter. The program will then jump to the sixth NOP. That NOP plus the 9 following it will be executed for a total of ten more instruction cycles. Note that the final GOTO has two

FIGURE 1 - SOFTWARE INTERRUPT FLOW CHART

instruction cycles and these must be included in the program overhead.

Example

The following example (see flow chart and code) is the core program for the software interrupt technique described above. This program assumes four interrupt conditions, four main program sections and an eight additional elapsed time instructions.

APPENDIX A:

MPASM B0.54

PAGE 1

			LIST	P=16C54	
					SOFTWARE INTERRUPT APPLICATIONS
					BRANCH IS MAIN PROGRAM REGISTER
8000		BRANCH	EQU	8	
0009		CNDTN	EQU	9	
A000		IO	EQU	0A	
0008		TEMP	EQU	0B	
0000	0069	SETUP	CLRF	CNDTN	
0001	0C04		MOVLW	4	
0002	0028		MOVWF	BRANCH	FOUR MAIN PROGRAM SECTIONS
0003	0008		MOVLW	8	SET ETCO TO ONE COUNT DED INCODICATON OVOLE
0004	0002		OPIION		75EI RICC IO ONE COUNT PER INSTRUCTION CICLE
0005	0061	START	CLRF	1	CLEAR RTCC REGISTER
0006	0206		MOVF	6,W	;READ I/O
0007	002A		MOVWF	IO CNIDEN M	WILL CECULON OF OODE ON OUT AREC BUE
0008	0109 002B		NOVWE	TEMP	TIMP TABLE ANY INDIT THAT CHANGES FROM
A000	0209		MOVE	CNDTN . W	A ZERO TO A ONE IS CONSIDERED AN INTERRUPT.
000B	00AB		SUBWF	TEMP,1	THE EQUATION IS:
000C	020A		MOVF	IO,W	; (IO + CNDTN) - CNDTN = INTERRUPT
000D	0029		MOVWF	CNDTN	;WHERE IO IS CURRENT INPUT AND
000E	020B		MOVF	TEMP,W	;CNDTN IS PREVIOUS INPUT.
000F	0E03		ANDLW	3	; MASK OFF TOP 6 BITS
0010	01E2		ADDWF	2,1	; ADD INPUT TO PC TO CREATE JUMP TABLE
0011	0A15		GOTO	MAIN TNT1	FOR INPUT=00
0013	0A17		GOTO	INT2	FOR INPUT=10
0014	0A19		GOTO	INT3	FOR INPUT=11
0015	0000	T.)	NOD		TIMPEDENTE TIME 1 CODE
0015	0000	TN.L.T	NOP	CULAD	TINTERRUPT LINE I CODE
0010	0000	TNT2	NOP	SIARI	INTERRIDT LINE 2 CODE
0018	0A05	11112	GOTO	START	THIERROFT HINE 2 CODE
0019	0000	INT3	NOP		;INTERRUPT LINES 1 AND 2 CODE
001A	0A05		GOTO	START	
001B	0208	ΜΑΤΝ	MOVE	BRANCH W	
001C	01E2	PHILIN	ADDWF	2,1	; ADD BRANCH TO PC TO CREATE JUMP TABLE
001D	0000		NOP		
001E	0A28		GOTO	MAIN4	JUMP TABLE, LAST FIRST ON DECREMENT TABLE
001F	0A26		GOTO	MAIN3	
0020	0A24		GOTO	MAIN2	
0021	0A22		GOTO	MAIN1	
0022	0000	MAIN1	NOP		;MAIN PROGRAM CODE BANK ONE
0023	0A2A		GOTO	BRNCHK	
0024	0000	MAIN2	NOP		;MAIN PROGRAM CODE SECTION TWO
0025	0A2A		GOTO	BRNCHK	
0026	0000	MAIN3	COTO	DDNCUV	MAIN PROGRAM CODE SECTION THREE
0027	0000	ΜΑΤΝ4	NOP	BRINCHK	MAIN PROGRAM CODE SECTION FOUR
0029	0A2A		GOTO	BRNCHK	HILL INCOME CODE DECITOR FOR
0027	0.2	DDNOUW	DECESZ	BDANCU 1	ירע מעמער אווע מענגלאיין אווע אווי אוויע אייי
002A	0A2E	DUNCHY	GOTO	TIMCHK	DECREMENT DRANCH REGISTER AND CHECK FOR ZERO
002C	0C04		MOVLW	4	
002D	0028		MOVWF	BRANCH	;RELOAD BRANCH WITH 4 AT END OF MAIN

2

Software Interrupt Techniques

002F	0081	SUBWF	1,W	;DETERMINE WAIT TIME
0030	01E2	ADDWF	2,1	;ADD WAIT TIME TO PC
0031	0000	NOP		
0032	0000	NOP		
0033	0000	NOP		
0034	0000	NOP		
0035	0000	NOP		
0036	0000	NOP		
0037	0000	NOP		
0038	0A05	GOTO	START	
		END		

Errors	:	0
Warnings	:	0

WORLDWIDE SALES & SERVICE

AMERICAS

Corporate Office

Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 602 786-7200 Fax: 602 786-7277 Technical Support: 602 786-7627 Web: http://www.mchip.com/microhip

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770 640-0034 Fax: 770 640-0307 Boston Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752 Tel: 508 480-9990 Fax: 508 480-8575 Chicago Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 708 285-0071 Fax: 708 285-0075 Dallas Microchip Technology Inc. 14651 Dallas Parkway, Suite 816 Dallas, TX 75240-8809 Tel: 214 991-7177 Fax: 214 991-8588 Dayton Microchip Technology Inc. 35 Rockridge Road Englewood, OH 45322 Tel: 513 832-2543 Fax: 513 832-2841 Los Angeles Microchip Technology Inc. 18201 Von Karman, Suite 455 Irvine, CA 92715 Tel: 714 263-1888 Fax: 714 263-1338 **New York** Microchip Technology Inc. 150 Motor Parkway, Suite 416 Hauppauge, NY 11788 Tel: 516 273-5305 Fax: 516 273-5335

AMERICAS (continued)

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408 436-7950 Fax: 408 436-7955

ASIA/PACIFIC

Hong Kong Microchip Technology Unit No. 3002-3004, Tower 1 Metroplaza 223 Hing Fong Road Kwai Fong, N.T. Hong Kong Tel: 852 2 401 1200 Fax: 852 2 401 3431 Korea Microchip Technology 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku, Seoul, Korea Tel: 82 2 554 7200 Fax: 82 2 558 5934 Singapore Microchip Technology 200 Middle Road #10-03 Prime Centre Singapore 188980 Tel: 65 334 8870 Fax: 65 334 8850 Taiwan Microchip Technology 10F-1C 207

Tung Hua North Road Taipei, Taiwan, ROC Tel: 886 2 717 7175 Fax: 886 2 545 0139

EUROPE

United Kingdom Arizona Microchip Technology Ltd. Unit 6, The Courtyard Meadow Bank, Furlong Road Bourne End, Buckinghamshire SL8 5AJ Tel: 44 0 1628 851077 Fax: 44 0 1628 850259 France Arizona Microchip Technology SARL 2 Rue du Buisson aux Fraises

91300 Massy - France Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79 Germany Arizona Microchip Technology GmbH

Gustav-Heinemann-Ring 125 D-81739 Muenchen, Germany Tel: 49 89 627 144 0 Fax: 49 89 627 144 44 Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Pegaso Ingresso No. 2 Via Paracelso 23, 20041 Agrate Brianza (MI) Italy Tel: 39 039 689 9939 Fax: 39 039 689 9883

JAPAN

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shin Yokohama Kohoku-Ku, Yokohama Kanagawa 222 Japan Tel: 81 45 471 6166 Fax: 81 45 471 6122

9/22/95

All rights reserved. © 1995, Microchip Technology Incorporated, USA.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.